Compute Principal Sensitivity Components for Elastic Net Regression
Usage
prinsens(
x,
y,
alpha,
lambda,
intercept = TRUE,
penalty_loadings,
en_algorithm_opts,
eps = 1e-06,
sparse = FALSE,
ncores = 1L,
method = deprecated()
)Arguments
- x
nbypmatrix of numeric predictors.- y
vector of response values of length
n.- alpha
elastic net penalty mixing parameter with \(0 \le \alpha \le 1\).
alpha = 1is the LASSO penalty, andalpha = 0the Ridge penalty. Can be a vector of several values, butalpha = 0cannot be mixed with other values.- lambda
optional user-supplied sequence of penalization levels. If given and not
NULL,nlambdaandlambda_min_ratioare ignored.- intercept
include an intercept in the model.
- penalty_loadings
a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for
alpha> 0.- en_algorithm_opts
options for the LS-EN algorithm. See en_algorithm_options for details.
- eps
numerical tolerance.
- sparse
use sparse coefficient vectors.
- ncores
number of CPU cores to use in parallel. By default, only one CPU core is used. Not supported on all platforms, in which case a warning is given.
- method
defunct. PSCs are always computed for EN estimates. For the PY procedure for unpenalized estimation use package pyinit.
Value
a list of principal sensitivity components, one per element in lambda. Each PSC is itself a list
with items lambda, alpha, and pscs.
References
Cohen Freue, G.V.; Kepplinger, D.; Salibián-Barrera, M.; Smucler, E. Robust elastic net estimators for variable selection and identification of proteomic biomarkers. Ann. Appl. Stat. 13 (2019), no. 4, 2065–2090 doi:10.1214/19-AOAS1269
Pena, D., and Yohai, V.J. A Fast Procedure for Outlier Diagnostics in Large Regression Problems. J. Amer. Statist. Assoc. 94 (1999). no. 446, 434–445. doi:10.2307/2670164
See also
Other functions for initial estimates:
enpy_initial_estimates(),
enpy_options(),
starting_point()