Skip to contents

Robust fitting of linear regression models

Fitting and estimating prediction performance

Fit linear regression models for a set of penalization levels and estimate the prediction performance via cross-validation.

change_cv_measure()
Change the Cross-Validation Measure
pense_cv() adapense_cv()
Cross-validation for (Adaptive) PENSE Estimates
regmest_cv() adamest_cv()
Cross-validation for (Adaptive) Elastic Net M-Estimates

Fitting only

pense()
Compute (Adaptive) Elastic Net S-Estimates of Regression
regmest()
Compute (Adaptive) Elastic Net M-Estimates of Regression

Plotting and printing

Methods for plotting and summarizing fits.

plot(<pense_cvfit>)
Plot Method for Penalized Estimates With Cross-Validation
plot(<pense_fit>)
Plot Method for Penalized Estimates
prediction_performance() print(<pense_pred_perf>)
Prediction Performance of Adaptive PENSE Fits
summary(<pense_cvfit>) print(<pense_cvfit>)
Summarize Cross-Validated PENSE Fit

Extracting information

Methods for extracting coefficient estimates and predicting values.

coef(<pense_cvfit>)
Extract Coefficient Estimates
coef(<pense_fit>)
Extract Coefficient Estimates
predict(<pense_cvfit>)
Predict Method for PENSE Fits
predict(<pense_fit>)
Predict Method for PENSE Fits
residuals(<pense_cvfit>)
Extract Residuals
residuals(<pense_fit>)
Extract Residuals

Robust location and scale

Compute robust location and scale estimates.

mloc()
Compute the M-estimate of Location
mlocscale()
Compute the M-estimate of Location and Scale
mscale()
Compute the M-Scale of Centered Values
tau_size()
Compute the Tau-Scale of Centered Values

Non-robust methods

Non-robust methods for fitting linear regression models.

elnet()
Compute the Least Squares (Adaptive) Elastic Net Regularization Path
elnet_cv()
Cross-validation for Least-Squares (Adaptive) Elastic Net Estimates

Advanced functionality

Controlling the Robust EN algorithm

Options to choose and control the algorithm to optimize robust EN objective functions

cd_algorithm_options()
Coordinate Descent (CD) Algorithm to Compute Penalized Elastic Net S-estimates
mm_algorithm_options()
MM-Algorithm to Compute Penalized Elastic Net S- and M-Estimates

Controlling the EN algorithm

Options to choose and control the algorithm to optimize least-squares EN problems.

en_admm_options()
Use the ADMM Elastic Net Algorithm
en_algorithm_options
Control the Algorithm to Compute (Weighted) Least-Squares Elastic Net Estimates
en_cd_options()
Use Coordinate Descent to Solve Elastic Net Problems
en_dal_options()
Use the DAL Elastic Net Algorithm
en_lars_options()
Use the LARS Elastic Net Algorithm

Rho/Psi functions

mscale_algorithm_options()
Options for the M-scale Estimation Algorithm
consistency_const() efficiency_const()
Get the Constant for Consistency for the M-Scale and for Efficiency for the M-estimate of Location
rho_function()
List Available Rho Functions

Initial estimates

Manually compute and alter initial estimates.

enpy_initial_estimates()
ENPY Initial Estimates for EN S-Estimators
enpy_options()
Options for the ENPY Algorithm
prinsens()
Principal Sensitivity Components
starting_point() as_starting_point()
Create Starting Points for the PENSE Algorithm

Miscellaneous