Package index
Fitting and estimating prediction performance
Fit linear regression models for a set of penalization levels and estimate the prediction performance via cross-validation.
-
change_cv_measure() - Change the Cross-Validation Measure
-
pense_cv()adapense_cv() - Cross-validation for (Adaptive) PENSE Estimates
-
regmest_cv()adamest_cv() - Cross-validation for (Adaptive) Elastic Net M-Estimates
-
plot(<pense_cvfit>) - Plot Method for Penalized Estimates With Cross-Validation
-
plot(<pense_fit>) - Plot Method for Penalized Estimates
-
prediction_performance()print(<pense_pred_perf>) - Prediction Performance of Adaptive PENSE Fits
-
summary(<pense_cvfit>)print(<pense_cvfit>) - Summarize Cross-Validated PENSE Fit
-
coef(<pense_cvfit>) - Extract Coefficient Estimates
-
coef(<pense_fit>) - Extract Coefficient Estimates
-
predict(<pense_cvfit>) - Predict Method for PENSE Fits
-
predict(<pense_fit>) - Predict Method for PENSE Fits
-
residuals(<pense_cvfit>) - Extract Residuals
-
residuals(<pense_fit>) - Extract Residuals
-
mloc() - Compute the M-estimate of Location
-
mlocscale() - Compute the M-estimate of Location and Scale
-
mscale() - Compute the M-Scale of Centered Values
-
tau_size() - Compute the Tau-Scale of Centered Values
-
elnet() - Compute the Least Squares (Adaptive) Elastic Net Regularization Path
-
elnet_cv() - Cross-validation for Least-Squares (Adaptive) Elastic Net Estimates
Controlling the Robust EN algorithm
Options to choose and control the algorithm to optimize robust EN objective functions
-
cd_algorithm_options() - Coordinate Descent (CD) Algorithm to Compute Penalized Elastic Net S-estimates
-
mm_algorithm_options() - MM-Algorithm to Compute Penalized Elastic Net S- and M-Estimates
Controlling the EN algorithm
Options to choose and control the algorithm to optimize least-squares EN problems.
-
en_admm_options() - Use the ADMM Elastic Net Algorithm
-
en_algorithm_options - Control the Algorithm to Compute (Weighted) Least-Squares Elastic Net Estimates
-
en_cd_options() - Use Coordinate Descent to Solve Elastic Net Problems
-
en_dal_options() - Use the DAL Elastic Net Algorithm
-
en_lars_options() - Use the LARS Elastic Net Algorithm
-
mscale_algorithm_options() - Options for the M-scale Estimation Algorithm
-
consistency_const()efficiency_const() - Get the Constant for Consistency for the M-Scale and for Efficiency for the M-estimate of Location
-
rho_function() - List Available Rho Functions
-
enpy_initial_estimates() - ENPY Initial Estimates for EN S-Estimators
-
enpy_options() - Options for the ENPY Algorithm
-
prinsens() - Principal Sensitivity Components
-
starting_point()as_starting_point() - Create Starting Points for the PENSE Algorithm